

Instituto Tecnológico de Costa Rica Universidad de Costa Rica

$egin{array}{ccccc} Tercer & Examen & Parcial \\ & Pre-C\'alculo & \end{array}$

Duración: 3 horas Puntaje: 45 puntos

01 de octubre de 2016

Instrucciones Generales:

- 1. Lea cuidadosamente cada instrucción y pregunta antes de contestar.
- 2. Esta es una prueba que consta de tres partes: selección única, respuesta corta y de desarrollo.
- 3. Las expresiones algebraicas que se presentan en este examen se asumen bien definidas en \mathbb{R}
- 4. En los ítems de desarrollo debe aparecer todo el procedimiento necesario para obtener su solución.
- 5. Escriba con bolígrafo de tinta indeleble azul o negra. No proceden reclamos sobre pruebas escritas con lápiz o que presenten alguna alteración.
- 6. No se permite el uso de celulares.
- 7. Si algún procedimiento está desordenado, no se calificará.
- 8. La calculadora que puede utilizar es aquella que contiene solo las operaciones básicas.
- 9. La prueba debe resolverse individualmente.

Nombre: _		_ Código:	
	Colegio:		

I Parte. Selección Única.

Total de puntos 21

A continuación se le presentan 21 enunciados, cada uno con cuatro opciones de respuesta de las cuales solo una es correcta. Marque una equis (x) sobre la letra que antecede a la opción que completa de forma correcta cada enunciado.

- 1. Considere las siguientes afirmaciones:
 - **I.** $\log_3 x > 0$ si 0 < x < 1
 - II. $\log_{\frac{1}{3}} x > 0$ si 0 < x < 1
 - **III.** $\log_a 3 > 0 \text{ si } a > 1$

De las afirmaciones anteriores, ¿cuáles son son verdaderas?

- a) I y III
- b) I y II
- c) II y III
- d) Solo III
- 2. Una opción que presenta un ejemplo de una función decreciente y cóncava hacia arriba corresponde a
 - a) $f: \mathbb{R} \longrightarrow]0, +\infty[tq \ f(x) = 2^x]$
 - b) $f:]0, +\infty[\longrightarrow \mathbb{R} \ tq \ f(x) = \log_2 x]$
 - c) $f: \mathbb{R} \longrightarrow]0, +\infty[tq \ f(x) = \left(\frac{1}{2}\right)^{-2x}]$
 - d) $f:]0, +\infty[\longrightarrow \mathbb{R} \ tq \ f(x) = \log_{\frac{1}{2}} x$

- 3. Si guna función cuyo dominio es \mathbbm{R} tal que $g(x)=3^x+2$ entonces su ámbito es
 - $a)]-\infty, 2]$
 - $b)]2, +\infty[$
 - $c)]-\infty, 2[$
 - $d) [2, +\infty[$
- 4. El dominio máximo de $h\left(x\right)=\log_{5}\left(2-x\right)$ es
 - $a)]-\infty, 2]$
 - $b)]2, +\infty[$
 - $c)]-\infty, 2[$
 - $d) [2, +\infty[$
- 5. La función f definida por $f(x) = (0,1)^{-x+2}$ corta al eje Y en el punto
 - a) (0, 10)
 - b) (0, 100)
 - $c) \left(0, \frac{1}{10}\right)$
 - $d) \ \left(0, \frac{1}{100}\right)$

- 6. Sean f y g funciones tales que $f(x) = a^x$ y $g(x) = \log_a x$, sobre $(f \circ g)$ se puede afirma que corresponde al siguiente tipo de función
 - a) identidad
 - b) constante
 - c) decreciente
 - d) no sobreyectiva
- 7. La expresión $\log_2 2 \cdot \log_2 4 \cdot \log_2 8 \cdot \log_2 16 \cdot \log_2 32$ es igual a
 - $a) 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
 - b) $2 \cdot 4 \cdot 8 \cdot 16 \cdot 32$
 - c) 1+2+3+4+5
 - d) 2 + 4 + 8 + 16 + 32
- 8. Si $\log_2\left(\frac{1}{k}\right) = 3$ entonces k es igual a
 - a) -8
 - $b) -\frac{1}{8}$
 - $c) \ \frac{1}{8}$
 - d) 8

- 9. La expresión $e^{4\ln 3 \ln 9}$ es igual a
 - a) 9
 - b) -9
 - $c) \ln 9$
 - $d) 4 \ln 3 \ln 9$
- 10. Una expresión equivalente a $\log \frac{(x+3)^3}{3x(x-1)}$ es
 - $a) \log(x+3) \log(x-1) \log x$
 - b) $3\log(x+3) \log(x-1) \log(3x)$
 - c) $3\log(x+3) \log 3(x-1) + \log(3x)$
 - d) $3\log(x+3) + 3\log(x-1) 3\log x$
- 11. Si se sabe que $\log 2 \approx 0,301$ y $\log 5 \approx 0,698$ entonces $\log_5 2$ es aproximadamente
 - a) 0,210
 - b) 0,431
 - c) 1
 - d) 2,319

- 12. La cantidad de carbono-14 presente en un organismo t años después de su muerte está dado por la ecuación $A = A_0 e^{-0.000124t}$ donde A_0 es la cantidad original de carbono-14 en el organismo. Si una hoja fosilizada contiene 70 % de la cantidad original de carbono-14 entonces el fósil indica que la hoja es de hace aproximadamente
 - $a) \frac{e^{0.7}}{0.000124}$ años
 - b) $\frac{\ln 0.7}{0.000124}$ años
 - $c) \frac{\ln 70}{0,000124}$ años
 - $d)\ -\frac{\ln 0,7}{0,000124}\ \mathrm{a\tilde{n}os}$
- 13. El conjunto solución de $2^x = 10$ es
 - $a) \left\{ \frac{1}{5} \right\}$
 - b) {5}
 - $c) \{\log_2 10\}$
 - $d) \{\log_{10} 2\}$
- 14. El conjunto solución de $5^{x^2-4x+3} = 1$ es
 - a) $\{1,3\}$
 - $b) \{-3, -1\}$
 - c) $\{2-\sqrt{2},2+\sqrt{2}\}$
 - d) $\{-2+\sqrt{2},-2-\sqrt{2}\}$

- 15. El conjunto solución de $\log \frac{1-x}{2+x} = 0$
 - $a) \varnothing$
 - b) {1}
 - $c) \left\{ -\frac{19}{11} \right\}$
 - $d) \left\{-\frac{1}{2}\right\}$
- 16. Un cono de volumen V_1 y un cilindro de volumen V_2 tienen la misma altura y el área de sus bases es igual entonces se puede afirmar que
 - a) $V_1 = 3V_2$
 - b) $V_2 = \frac{1}{3}V_1$
 - c) $V_2 = 3V_1$
 - $d) V_1 = \frac{1}{3} + V_2$
- 17. Si se tiene una esfera de 4cm de radio y un cubo de 4cm de arista, sobre sus volúmenes, se puede garantizar que
 - a) los volúmenes son iguales.
 - b) el volumen de la esfera es mayor que el del cubo.
 - c) el volumen del cubo es mayor que el de la esfera.
 - d) la razón entre el volumen de la esfera y el del cubo es $\frac{4}{3}$

- 18. Si el área lateral de un cono mide $16\pi\sqrt{5}cm^2$ y el radio de la base mide 4cm entonces su altura mide
 - a) 8cm
 - b) 64cm
 - c) $4\sqrt{6}cm$
 - d) $4\sqrt{5}cm$
- 19. En una pirámide de base cuadrada de 8 cm de lado y 12 cm de altura, la medida en cm de la apotema de la pirámide corresponde a
 - a) $4\sqrt{3}$
 - b) $4\sqrt{11}$
 - c) $4\sqrt{17}$
 - d) $4\sqrt{10}$
- $20.\ En una circunferencia de radio <math display="inline">R$ se inscriben un cuadrado y un hexágono regular. La razón entre la apotema del cuadrado y la del hexágono es:
 - $a) \sqrt{\frac{2}{3}}$
 - $b) \sqrt{\frac{3}{2}}$
 - $c) \ \frac{\sqrt{3}}{3}$
 - $d) \sqrt{3}$

21.	Considere las siguientes afirmaciones:	
	I. Toda cuerda contiene únicamente dos puntos del círculo. II. La medida de una cuerda de una circunferencia de radio r es siempre meno III. Si \overline{AC} y \overline{CD} son radios de una circunferencia entonces \overline{AD} es un diámetr	
	De las afirmaciones anteriores son verdaderas	
	a) I y III	
	b) I y II	
	c) II y III	
	d) Solo II	
	arte. Respuesta Corta. este correctamente las siguientes preguntas.	Total de puntos 8
1.	¿Cuántos lados tiene un polígono que tiene en total 90 diagonales?	
2.	¿Cuál es la medida del ángulo central de un decágono regular?	
3.	¿Cuál es el número de lados de un polígono regular cuyo lado mide 25 cm y tien 325 cm ?	ne un perímetro de
4.	¿Cuál es el nombre del polígono regular cuyo ángulo central mide 45°?	
5.	¿Cuál es la medida del radio de un hexágono regular si su apotema mide $12\sqrt{3}$	$\bar{5}~m?$

6.	¿Cuál es la longitud de una cuerda que dista 5 cm del centro de una circunferencia cuyo radio mide 8 cm?
7.	Un punto P dista 2 cm del centro de una circunferencia cuyo diámetro mide 6 cm ¿Cuál es la menor distancia de P a la circunferencia?
8.	El péndulo de un reloj describe un ángulo de 20° al balancearse y la longitud del arco es de $3\pi~m.$ ¿Cuál es la longitud del péndulo?

III Parte. Desarrollo.

Total de puntos 16

A continuación se le presentan 3 ejercicios. Resuélvalos en forma clara, correcta y ordenada. Deben aparecer todos los procedimientos necesarios para resolver cada ejercicio.

1. Considere la función $f: D \to \mathbb{R}$ tal que $f(x) = 3 + \ln(2x - 3)$ Determine:

a) El dominio máximo D de f

1 punto.

b) La imagen de 2 y la ecuación de la asíntota de f

2 puntos

c) La función inversa de f

3 puntos

2. Halle el conjunto solución de la siguiente ecuación

5 puntos

$$1 + \log(1 + 2x + x^2) - \log(x^2 + 6) = 2\log(x + 1)$$

3. Se inscribe un cilindro circular recto dentro de un cono circular recto. En el cono la altur 12 cm y el radio de la base mide 6 cm. Si la altura del cilindro mide el doble del radio de se Determinela razón entrel volumendel cono y el del cilindro.			